
LESSON 4
In this lesson, we’re going to start adding graphics to our game. We’ll use
the NESmaker pixel editor to create and modify graphics and export them
as CHR files, however, we will create our own logic systems, functions, and
methods to add those to our game rather than using NESmaker’s default
tileset system. What this will mean is that some of the GUI interfaces will no
longer function correctly, since we’re deviating from how they are set up.
By doing it this longhand way, we’ll get a better understanding of how those
tileset systems work and why they are set up the way that they are.

Step 1: Open a new canvas in the Pixel Editor.

Click on the Pixel Editor node in the project hierarchy to open up the pixel
editor tool. From the Pixel Editor window that appears at the top of the
screen, choose New BMP ->128x128 (Full Tileset). This will create a
canvas the exact size of a vRam page for graphics. We’ll start by creating
our sprite objects.

Step 2: Open a tab for existing hero graphics.

From the Pixel Editor menu, click on Add Tab. WIth that new tab selected,
click on the open icon in the Pixel Editor tool bar. Navigate to Root \
TutorialAssets \ 4_5_x_BetaTutorialAssets \ Graphics \ TutorialGraphics
and choose GameObjects_Hero.

Step 3:Copy the player into the blank canvas.

Use the tile selection tool to select the player graphics, press control-C to
copy, then move to your first tab, move your mouse to the top left corner,
and press control-shift-V to paste and lock to the grid.

Step 4: Add more graphics to this tileset.

Repeat the process, adding the Medieval Monster tileset and the crab tilset
to help fill up this full page. I have turned the 16x16 grid on to be able to
more clearly paste the different files into position.

What we have created is a proxy file. When we save this, it will become a
four color bitmap file. Working with bitmap files is an outgrowth of early
attempts to work with files from external sources such as Photoshop. Upon
assembling the NES game with the default modules, NESmaker creates
CHR files out of the default tilesets and includes them into memory slots
that become available to our GUI. The drop down lists you see in some of
the NESmaker tools when you’re determining which tilesets to use are the
result of this. However, we are not creating a file that fits in that paradigm.
Similarly, we are not going to place this bmp file in a location to where it will
be converted to a CHR or included in the project. We will have to do this
manually.

If we wanted to save this graphics file for easy editing later, we could Save-
As and store the bitmap to recall easily. For this project, we’ll skip that step
and go right to turning it into a CHR file.

Step 5: Export a CHR.

From the Pixel Editor menu, choose Export CHR. For this project, I’m just
going to navigate to my GameEngineData folder and place the CHR right
there. This is not a great practice, and you should probably make a
dedicated folder for any extraneous graphic needs just to keep organized,
but for the limited work we’re going to do with this project, that will be fine.

I am going to call mine PracticeSpriteGraphics.

To actually get these graphics into our game, we’ll need to do two separate
things. The first is load them into our ROM somewhere. The second is to
actually load these tiles into the proper place in video memory. We’ll create
an initialization script to handle loading things into the ROM.

Step 6:Add an Initialization script define.

In our Script Settings, in System, add a script define for SCR_INIT.

Step 7: Create a blank initialization script.

In your default script editor, make a new script. Save it to the folder that
contains your other System Scripts. Where you save it isn’t hugely
important, but this will make it easier to find. Make sure to save it as an

ASM (Assembly Language Source File) type, and name it Init_Tutorial.
Don’t forget that you may have to put something in the file for it to save, so
using semicolons with some sort of description is always an easy way to
save a functionally empty script.

Then, from your script settings, attach this script to initialization.

Step 8: Include the initialization script in your game.

Open up your Base script by clicking on it in the script settings and
pressing edit. We’re going to include this, but we’re also going to start
being smart about the order of things in this file. Yes, the header should be
at the top. Then the memory map. And then bank assignments. All of that
looks good. Once we’ve moved beyond Assigned Banks, we have put our
pen on the top of the page of our static bank. Right now, the first thing we
write is the RESET routine. That makes sense. Before we do anything else,
we want to clear out all of the existing RAM data. But then we move into a
table. That might be problematic. Our game is now just spitting a bunch of
random numbers without context, which may be read as opcodes and do
all sorts of wacky things!

What we really want to do after our RESET is to initialize our startup stuff
and then jump to the main game loop. At the end of the main game loop, it

will return to the top of the game loop, and the program will just stay in the
main game loop infinitely until there is a command to bounce outside of it.
At that point, there is no problem telling it to reference the numbers in our
palette tables (like with the NMI) because we’d be giving those numbers
context in our main game loop.

So if read like steps of instructions, here’s what we want to do:

1. Let the emulator know what is happening (the header).
2. Set up the memory map so we know what ram data goes where.

(Memory Map)
3. Assign banks, so that we know what rom data goes where. When

we’re done doing this, we’ll end at the beginning of our static bank.
(Assign Banks)

4. The first thing the program should do is reset all the RAM (RESET)
5. Initialize any important data we want set up at the start of the

game.
6. Jump to our game loop, and start it looping. (Game Loop)

If we do it like this, we can keep the palette tables right where they are,
because at the end of our initialization, we’ll jump straight passed them,
only ever referencing them when we’ve told our program to go outside the
main loop to fetch them.

Make sure to save this file.

In order for the above plan to work, the very last instruction for our INIT
routine has to be to jump to our main game loop. If you were to edit your
Game Loop script, you’d find that it has a label called MainGameLoop. The
only thing under it is a jump back to MainGameLoop. In between those two
lines is effectively where your entire game will live. But first we have to get
there.

Step 9: Jump to MainGameLoop.

Open up our currently empty initialization script and at the end of it, write
JMP MainGameLoop. This will cause our program to correctly jump into our
main game loop at the end of initialization.

Now we know that at the end of our Initialization, we’ll jump right to the
game loop. So we can put tables or other data in between the INIT and the
Game Loop if we need to.

Step 10: Include the graphics file in our ROM.

Now we have to make a space in the ROM to actually include the binary
data for the CHR file we created. This won’t load it to our video memory

yet, but will include it in our program so that it’s accessible to video
memory. Ordinarily, we’d almost certainly spread our graphics data to one
of our other memory banks. For right now, though, we’re going to try to fit
something functional all inside of one bank.

Incbin includes a binary file, like a CHR file, to our project. Since our
codebase sees the GameEngineData as our root folder, we can just incbin
the name of the file without adding any folder delineation.

Notice I added a label of TutorialSpriteGraphics before the incbin. We will
use this label as a reference point when we go to fetch these graphics to
load them into video memory. In normal NESmaker modules, there are
labels for each of the default tilesets, and routines to call the right one
based on the choice selected in the GUI for a given screen or situation.
Here, in doing it by hand, we’re just going to crudely send this whole CHR
page to the video memory during our initialization.

Step 11: Understanding the CHR File

Our Picture Processing Unit has two pages devoted for this graphics data.
Based on some things we already set up (bit 3 written to $2000), our sprite
graphics will exist at PPU address $0000 while our background graphics
will exist at PPU address $1000.

We’re going to synthesize some of the things we’ve already learned and
add a few new concepts. First of all, a CHR file is just a long string of bytes
that represent pixel information. Every pixel for a tile can be expressed in
one of four values, which translate through the loaded palette as colors. If
you have colors in your palette slots black, red, blue, and green, any pixel
utilizing value 0 will be black, any pixel using value 1 will be red, any pixel
using value 2 will be blue, and any pixel using value 3 will be green. If you
have an understanding of the NESmaker pixel editor, this should be second
nature to you.

But for a moment, let’s talk about the actual binary data that makes up a
chr file. For the sake of argument, let’s focus on a single 8x8px tile. In that
tile, we’d expect 64 pixels, since it is 8 across and 8 down.

So where black is 0, red is 1, green is 2, and blue is 3, an eventual tile
might look like this:

It could be expressed in a table of colors like this:

0 1 1 1 1 1 1 1

0 0 1 3 3 3 3 3

0 0 0 1 3 3 3 3

0 1 1 3 3 3 3 3

1 3 3 3 3 3 3 2

0 1 3 3 3 2 2 2

0 0 1 3 2 1 2 2

0 1 2 2 2 1 2 2

Unfortunately, this can not be written in 8 bytes, because bytes can only
have 8 bits that can either be flipped to a zero or a one - there is no such
thing as a two or a three as a value of a bit. So how a CHR file is written is
that each 8x8px tile is two tables made up of 8 bytes that are combined to
figure out the final value.

0 AND 0 = BLACK
1 AND 0 = RED
0 AND 1 = GREEN
1 AND 1 = BLUE

BYTE 1 B BYTE 2

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1

0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1

0 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 0 1 0 0

0 0 0 1 1 0 1 1

0 1 0 0 0 1 0 0

0 0 1 1 1 0 1 1

The binary equivalent of this tile, which is the top left corner of our
character’s head, would look something like this in the CHR file:

(First set of Bytes)
01111111 00111111 00011111 01111111 11111110 01111000 00110100 01000100

(Second set of Bytes)
00000000 00011111 00001111 00011111 01111111 00111111 00011011 00111011

Even though we will never actually write CHR files this way, it’s very
important to understand how it works in order to properly load the CHR
data that we created with our pixel editor. We know that to push a single
8x8px tile’s worth of data from our program to the Picture Processing Unit,
we will need to write 16 bytes.

The entire page of CHR data consisted of 16 columns and 16 rows of
8x8px tiles, which is a total 0f 256.

This means that we will need to push 256 x 16 consecutive bytes. That’s
4096 bytes of data for that single page of CHR data.

No problem. That’s easy enough to conceive of. We write byte one to the
proper address, then we write byte 2, then we write byte 3…just keep
incrementing until we reach 4096. But unfortunately, we’re dealing with an
8 bit system, and as we’ve discussed already, an 8-bit system only plays
nice with numbers from 0-255. For this reason, we’ll need to keep track of
our copy position using a 16 bit address.

To think about it in terms of mailboxes, every street has 256 houses, each
with its own mailbox. I start on First Street. I need to grab the mail from
mailbox one on First Street and send it to the PPU, then move along to the
next, and then the next, and then the next, until I get to the end of the
block.

When I get to the last mailbox on First Street, I have not completely
finished picking up all the mail. There are sixteen street. When I get done

with First Street, I move to the first mailbox on Second Street, and pick up
their mail one by one until the end, before moving on to Third Street, and
so on. In this example, the mailbox number is the low byte of the sixteen bit
address, while the high byte is the actual street I am on. There are still only
ever 256 “mailboxes” on each street, so I’m only ever counting 0-255, but I
can then increment through the streets themselves to pick up more than
256 mailboxes full of mail.

So what I’m going to need is a sixteen bit pointer. For this, we’ll create a
few variables in our zero page.

Step 12: Creating a 16 bit pointer in our zero page.

Open up your Script Settings and go to the zero page variable file. There,
we’ll create a variable called pointer, which will be comprised of two bytes
(a high and low byte).

Now, in your Initialization file, we’re going to set up a loop similar to what
we did with the palettes, using our newly created pointer variable, to load in
the graphics to the proper place.

Step 13: Writing our logical framework for loading a tile

From here we’ll start simple. Here’s the logic:

• Load the 16 bit address of our chr file label to the pointer.
• Write the PPU address that we want to write to to $2006. We’re trying

to write to $0000, so we’ll write #$00 to $2006 twice.
• Use the y register as an offset to iterate through the file byte by byte

until we’ve written 16 bytes (remember, 16 in dec is hex #$10).
Writing 16 bytes from the CHR file will write one full tile, as explained
above.

We’ll try that to see if we can write a single tile, then we’ll talk about how to
write all 256 tiles.

Step 14: Making sure that rendering is turned off when writing to the
PPU

There is one additional problem with this though if we trace through our
logic. In our base file, we do the reset followed by the init script. This is
good practice for sure - if we did them in the reverse order, we’d blank out
a lot of the ram variables we set up with our INIT. But the problem is,
currently at the end of our RESET routine, we turn rendering back on. If
you remember from previous lessons, we can only write to the PPU when
we’re in the vertical blanking period or the screen is turned off. If we try to
write to the PPU while the PPU is trying to actively render the screen, a lot
can go wrong and we’ll get all sorts of jumbled graphics. And of course
trying to write over 4000 bytes to the PPU is far too much to try to do in
vBlank during the NMI. So what we’ll have to do is make sure that
rendering is turned off.

We also want to make sure that no NMI is observed in the middle of doing
all this, because at the end of our NMI, we turn back on Rendering again.

Doing these things involves writing to $2000 and $2001. One option is to
just move our writes to turn on rendering out of the RESET and to the end
of this INIT script. But since we don’t know what else we might put in
between the two, it’ll be safest for the time being (and to get used to the
process) to simply disable rendering and the NMI at the beginning of writing
to the PPU in our INIT script, and then enable it at the end.

So append the script. At the beginning of the init script, disable rendering
and turn off the NMI by writing to $2000 and $2001, and then at the end
right before jumping to the main game, turn back on rendering and enable
the NMI.

If you test your game and look at the CHR viewer in the PPU, you should
see that you have pulled one tile to the PPU.

Now we need to expand this to load 256 tiles. Since this whole process
creates one tile, and we want to create 256 tiles, we can use the X register
as a counter to loop through the loop 256 times.

Step 15: Loading our entire tilesheet

Here’s the logic. We’re going to take the routine that we just wrote, the one
that writes 16 consecutive bytes from the position of “pointer” to our PPU,
and we’re going to loop the whole thing 256 times. In each iteration, we’re
going to increase the pointer’s starting position by 16 so that the position on

the next go-round is at the address that points to the next tile. This will
involve 16 bit math.

Let’s talk a bit about math in ASM before we put it to work. Addition is
actually quite easy.

LDA someVariable ;; load the variable you want to change
ADC #$01 ;; ADC = add, the number is the amount to add
STA someVariable ;; store the sum back to the variable.

So if prior to this operation, 5 was stored in the someVariable mailbox, this
routine would take it out, add 1 to it, and put the result back in to the
someVariable mailbox.

However, we know that in 8bit math, there are only 256 values before it
loops around to zero again. To make this super clear, I’ll switch to decimal.
What happens if I write this?

LDA #250
ADC #10

The result of this would be decimal 260. Unfortunately, there is no way to
cram more than 255 into an 8-bit mailbox. This would actually end up
equating to four. 251, 252, 253, 254, 255, 0, 1, 2, 3, 4. So #250+#10 would
equal #4.

But at the same time, an internal carry flag would be ticked. Our program
would understand that these numbers overflowed, the same way that in
base 10, if we were to say 95+10, we would get 105, which is effectively 05
with a carry into the hundreds place.1-05.

By default, this carry is set and will be applied to the next mathematical
operation until I clear it using the operation CLC, which literally means
clear the carry flag.

So if I were to write:

LDA someVariable
ADC #$01
STA someVariable

…but the carry flag was set from a previous operation, it would carry into
this mathematical equation and it would actually add *two* to someVariable
instead of one. For this reason, when working in 8 bit math, it is always
important to clear the carry if you can’t be sure that the state that it’s in. So
really, trying to add 1 to someVariable would usually look like:

LDA someVariable ;; load the var
CLC ;; clear the carry, just in case it is set
ADC #$01 ;; add one
STA someVariable ;; store it back to the var

But now we’re in a peculiar case. We know that there are 4096 bytes we
have to load. We need a 16 bit pointer to continue to iterate through those
16 at a time. If we were just using 8 bit math, we would get to 240, try to
add 16, and we’d start loading from the beginning again, when we want to
continue to move in 16 bit space through the addresses. We want to start
loading graphics from the beginning of the label (so, plus zero), and load 16
bytes. That’s tile 0. Then we want to jump 16 spaces, which is where the
second tile starts, so +16. That’s tile 1. Then we want to jump 16 spaces,
which is where the third tile starts, so +32. That’s tile 2. Each time, loading
16 bytes from the CHR file that make up a single tile, like this.
 Address of Tiles +0
 Address of Tiles +16
 Address of Tiles +32
 Address of Tiles + 48
 Address of Tiles +64
 Address of Tiles +80
 Address of TIles + 96
 Address of Tiles + 112
 Address of Tiles +128
 Address of Tiles +144
 Address of TIles + 160
 Address of Tiles + 176
 Address of Tiles + 192
 Address of Tiles + 208
 Address of Tiles +224
 Address of Tiles + 240

But now, on this 17th value, we have a problem. We need to jump another
16, except another 16 would take us to 256. That would effectively lead us

back to +0, which would re-write Address of Tiles + 0 again. We can’t have
that. This is why we’re going to use a carry for the high byte. Like this:

High byte of address +0 Low byte of address +0

High byte of address +0 Low byte of address +16

High byte of address +0 Low byte of address +32

High byte of address +0 Low byte of address +48

High byte of address +0 Low byte of address +64

High byte of address +0 Low byte of address +80

High byte of address +0 Low byte of address +96

High byte of address +0 Low byte of address +112

High byte of address +0 Low byte of address +128

High byte of address +0 Low byte of address +144

High byte of address +0 Low byte of address +160

High byte of address +0 Low byte of address +176

High byte of address +0 Low byte of address +192

High byte of address +0 Low byte of address +208

High byte of address +0 Low byte of address +224

High byte of address +0 Low byte of address +240

High byte of address +1 Low byte of address +0

High byte of address +1 Low byte of address +16

High byte of address +1 Low byte of address +32

…etc …etc

You can see that when we loop around again, the high byte of the address
will increase. Every time we get to that carry again, it will increase again,
allowing us to reference offsets through the code as far as we need to
without worrying about an 8 bit limit of math.

So how do we do that? Simple - we clear the carry when we add the low
byte, but we DON’T clear the carry when we add the high byte. Like this:

LDA someVariable
CLC
ADC #16
STA someVariable

LDA someVariable+1
ADC #0
STA someVariable+1

Now, some variable will get regular 8 bit math applied. The second
variable, here called someVariable+1, will get zero applied to UNLESS the
carry was set during the 8 bit math. If the carry was set, it will add one to
someVariable+1. This is a quick and dirty explanation of 16 bit
math. We’re going to use it for our pointer.

Here, we’ll use the X register to count how many tiles we’ve loaded. If X
starts at zero and we take one away, it will become 255. At that point, it is
no longer zero, and we will continue our loop. It will continue to do this,
decreasing X each time through the loop until X = 0, which is 255 times.

Test your game and check out the PPU. You should now see your entire
graphics sheet loaded in the top table, being pushed through whatever you
have set up for your sprite palette.

End of Lesson 4.
You should now have a little bit deeper knowledge of the structure of CHR
files, how to load a CHR file into your ROM, and how to push it to the PPU.
You should be aware that you can only work with the PPU when rendering
is turned off. You should also have a decent grasp on how 8 and 16 bit
addition work, and basics about using 16-bit pointers.

