
LESSON 3 
In this lesson we’re going to refine our NMI script a bit, learn how to work 
with tables, make a simple loop function in ASM, and take a cursory 
glimpse at comparing different number systems.  
 
You’ll notice that as we do this, we’re jettisoning the NESmaker GUI for 
generating palettes and doing it all by hand. The NESmaker GUI was 
intended to simplify a lot of the more cumbersome or rather nebulous 
things, like what we’re doing right now, so that a user could jump straight to 
the creative part of creating a game. However, learning the inner workings 
can help advanced users find ways to bend the tool to their needs and 
make it a valuable part of their workflow, even if they don’t want to start 
with templates. An advanced user can set up their own template that 
makes use of any of the parts of the software that makes their workflow 
easier, find creative ways to integrate with exports from other software in 
their tool chain, and utilize whichever parts of the GUI that aid in their 
development and speed up the more cumbersome parts of the process. 
 
We’ll start this lesson by refining our NMI. Right now, we’re wasting a lot of 
unnecessary cycles, and as we discussed in the last lesson, our time is 
very precious during vBlank time when the NMI fires, so we need to save 
every cycle that we can! 
 
 

Step 1: Writing to 2007 through incrementing rather than direct writes. 
In the last lesson, we wrote our palette data directly to vRam addresses. 
We did this one at a time. We wrote the high byte of the address, then the 
low byte of the address, then the value. And this is a great concept to 
understand, because it will be quite common for us to need to write to 16bit 
addresses this way. However, every time we do this it takes up a certain 
number of cycles, and in this case, it takes up needless cycles.  
 
The reason I say needless is because when we do a write to $2007, the 
address to which we’re pointing to automatically increments to the next 
address. So after we have established the address by writing the high byte 
to $2006 and the low byte to $2007 and the value to $2007, it automatically 
increases that low byte to the next incremental value. 
 



Basically, it’s the mailman standing at the mailboxes. He puts the contents 
in mailbox 1 and then closes the mailbox door. Then, he automatically 
moves to mailbox 2. He doesn’t explicitly need to be told to move on to 
mailbox 2. He moves to mailbox 2 automatically. He’s done delivering the 
mail to box 1, so he moves to the next box without needing instruction to do 
so, unless for some reason we tell him to behave otherwise. 
 
So with this in mind, let’s refine our code and write our four values, but only 
point to the address before the first write. From there, we can just crank on 
writes to $2007 without having to invoke the address again. 
 

 
 
Here, I’ve commented the code changes. You can see at line 42 (it’s ok if 
your lines of code don’t line up exactly, they may be slightly different 
depending how you spaced it differently than me - it has no bearing on the 
end result) we write #$3F, store it to $2006. This sets the high byte of the 
address. Then we write #$00, store it to $2006, which sets the low byte of 



the address. Whatever we write to $2007 next will be what gets put into 
that PPU address. 
 
But then, instead of just repeating the process to set the address one 
higher, the write to $2007 automatically writes to one address higher, which 
would be $3f01. 
 
If you test your game and take a look at the PPU, you’ll notice that 
functionally, this is no different in the resulting ROM. However, it is a highly 
optimized way of writing it, and gets rid of unnecessary code. Our $2006 
address pointer will continue to increment after writes to $2007 until we 
point it somewhere else. 
 
Knowing that we have 16 background palette slots and 16 sprite palette 
slots, this code could get unruly. Especially considering that our pointer 
address will increment with every write to $2007, we could create a table 
with our colors laid out in order, and then use a logical loop to just blast 
through putting them in their place. 
 
 
 

STEP 2: Make a script define for a color table 
Just to get practice doing it, we’re going to make a script group for tables, 
and a script define for palettes, which is where we’ll place our table. This is 
not a necessary step in getting the game to function how we want it to, but 
it will help us with organization so we can find what we need quickly when 
our code starts to grow and become overwhelming to hunt through. 
 
In the Script Settings tab of our Project Settings, click the + symbol to add a 
new group node at the bottom of the list. Right click and rename this group 
node Tables. Then, with that selected, click add at the top of the dialog box 
to add a new script define. Call it Palette Tables and set the define to 
SCR_PALETTE_TABLES. We don’t yet have a script to attach. 
 



 
. 
 

Step 3: Make a color table script. 
In Notepad++ (or your script editor of choice), make a new file. This will 
contain our palette tables. We are going to create a label for our table and 
fill the table with 16 values, split into four groups of four.  
 
Use the label myPaletteTable. Make sure that every row starts with a .db, 
make sure that every value has a comma between it except at the end of 
lines where no comma is needed. If written like this, the program will see 
this as 16 consecutive values in myPaletteTable. 
 
Save the file as myPaletteTables.asm to your project’s System folder - 
make sure that it saving as type Assembly Language File. Saving it to the 
System folder is arbitrary, and it may be possibly it would be better served 
in the Game folder, but for now we’re going to keep all these scripts we’re 
creating for this instructional in one place. 
 



 
 

The colors that you use for this are arbitrary. You can use any colors from 
the list of constants that you created, but it’s important to keep the first 
color of each of these rows of four the same. This is just a part of how the 
system operates. The first color is a common color that all sub palettes will 
share. If you were to change the first value in the last row to #C_RED, it 
would change all of the first row values to #C_RED. The best thing to do is 
just keep them all the same, and write your palettes like this so that’s very 
easy to see. 
 
 

Step 4: Attach the tables script to our script define. 
 



 
 
 

Step 5: Add this new table to our code. 
Now we have to figure out where to put this script in our body of code. And 
admittedly, there isn’t much in our body of code right now. To understand 
where we should (and maybe more importantly, should not) put it, we’ll 
have to consider our current existing code.  
 
Go to your script settings and edit the Base script to open it in your code 
editor. This is the backbone of our entire game. We can see our memory 
map at the top. We can see where our NMI sits. We can imagine if we just 
replaced all of these includes with the script that they define, that would be 
what our game looks like in code. These are just references to those files, 
broken out through NESmaker’s script editor so we can just focus on what 
we want to focus on at a time rather than have a complicated long string of 
endless code to sort through. 
 
But where in this list should we include our new palette table? There is no 
single answer that is right, but there are answers that are wrong. Generally, 
we want to place our tables in the same section as our game loop. To 
understand why, it’s important to understand what the 



SCR_ASSIGN_BANKS did for us. In simplest terms, it sets up the content 
for all of our possible swappable memory banks to be put at address $8000 
when they are swapped in, and then sets a directive to flow to the 
beginning of our static bank, which is located at $C000. Here is where our 
game code starts, at memory address $C000. If you were to look at the 
code associated with the assign banks script, you’d see that the last line of 
it is .org $C000. This tells our program that subsequent data will be placed 
starting at $C000 unless we tell it otherwise. 
 
By including our code after this .org directive, we are ensuring that it is 
placed in our static bank so that we can easily reference it. 
 
For the time being, place an include to this script just before the Main 
Game Loop. As this project grows, we will be doing an entire initialization 
step here, but for now we can just include the palette. This will make sure 
that it’s included in our static bank, and we’ll be able to reference it at all 
times from the NMI. Make sure to save the file. 
 

 
 
 



Step 6: Make a loop to load colors during the NMI. 
So now that we know our palette table is accessible to us, we are going to 
write a loop to load values in the NMI. To test it, we’re just going to loop 
through the first four values (the remaining will be arbitrary garbage). When 
we’re finished, if you set yours up to be the same colors as mine, you 
should see a gradient - black, gray, light gray, and white in the first four 
color slots of the palette viewer in the emulator. 
 
In our NMI script, we’re going to keep those initial writes to $2006, because 
we still want that to be the starting address of our first write. However, as 
far as what to actually write, we want to use the first table value. Then we 
want to get the next table value and write it, then the next and write it. 
 
So here’s the logic of what we want to do.  
 
 

• ACTION A: Get the starting address of our first mailbox we want to 
deliver a letter to. 

 
 

• ACTION B: Hold up zero fingers (in NES speak, zero will count as a 
*first* of something. Our counting of things  will almost always start at 
zero, not 1). 
 
START A LOOPING ACTION… 
 
 

o ACTION C: Our fingers being held up will determine what mail 
we should grab. Right now, my hand has zero fingers, so look 
for the letter addressed to mailbox zero. 
 
 

o ACTION D: Place it in the zero mailbox. Automatically after 
closing this mailbox, I move to the next mailbox. 
 
 

o ACTION E: Increase how many fingers are being held up. Is it 
four yet? If so, jump to END LOOPING ACTION. But iIf I don’t 
see four fingers yet, jump to ACTION C, the beginning of the 
loop and repeat, with that one more finger raised than last time 



around. 
 
 

END LOOPING ACTION 
 
Looking at that in assembly code looks like this. 
 

 
 
 
 

• The writes to 2006 set up our first address that we want to deliver a 
letter to. 
 
 

• LDX #$00 tells the program to load zero into the x register. This is 
telling the system we are holding up zero proverbial fingers. 
 
 



• doLoadPaletteLoop is a label that will represent the start of our loop. 
When we hit the point where we want to start the loop over, this is 
where we will jump back to. 
 
 

o Look at the table myPaletteTable, but increased from the start 
of that table by an offset of X. So if x is 0, it would be the first 
value in that table. If x is 1, it would be the second value in that 
table. If x is 2, it would be the third value in that table. The X 
register is keeping track of how many times we have gone 
through the loop so far…how many metaphorical fingers we are 
holding up.Take the number at that spot, and put it in the 
accumulator (grab it so we’re ready to deliver it to the mailbox). 
 
 

o We store what is in the accumulator. We deliver it to the proper 
mailbox. Then, automatically by doing so, our program knows 
to shut that mailbox and move to the next one. 
 
 

o Increase the value in the X register by 1 (raise one more 
finger). Now, compare X to the number four (look at your 
fingers - are four of them held up yet?). 
 
BNE is an ASM instruction that means B(ranch if) N(ot) E(qual). 
This tells the program to branch to the label doLoadPaletteLoop 
(Jump to the beginning of the loop) if the previous condition (did 
x equal 4?) was not met yet. 
 
Otherwise, it just ignores doing anything and continues on 
down the code. 
 
 
 

So if you work the logic through, this will load the first value in the 
myPaletteTable into the initial palette slot (0), loop back to load the second 
value of the table into the second palette slot (1), loop back to load the third 
in the third slot (2), loop back to load the fourth in the fourth slot (3),  and 
then when the x register increases one more time it will be 4, so the 
comparison to 4 will cause it to leave the loop. 



 
If we run the game and hit control P to enter the PPU viewer in MESEN, we 
should see our black to white gradient in the first four color slot (the rest is 
all garbage values so just ignore for a moment). 
 

 
 

That’s great, but we made a table that is 16 slots long. We should be able 
to fill up all four rows of all four columns by just changing the number of 
times we cycle through the variable. We don’t want to stop if we have four 



fingers up. We want to stop if we have 16 fingers up (or I suppose ten 
fingers and six toes for most of us). 
 
 

Step 7: Extend the loop to run 16 times. 
Here, we’re going to change the line CPX #$04 to CPX #$10. For those 
who have never worked with hex values, #$10 is a hex value with the 
decimal equivalent of 16. The first time working with hex values can be a bit 
confusing, but it’s conceptually easy to understand even if it takes some 
getting used to to master.  
 
When you’re using hexadecimal math, you’re working with a base 16 
number system, whereas decimal is a base 10 number system. That 
means that in the regular decimal math that you’re used to, numbers go 
from 0-9 (ten values), and when they increase again, we add one to the 
higher place value and start over again (10-19; 20-29; 30-39, etc). 
 
With hexadecimal, numbers go from 0-f (sixteen values), and when they 
increase again, we add one to the higher place value and start over again 
(10-1f; 20-2f, 30-3f, etc). 
 
Translating back and forth can seem weird at first, but as you work with 
hexadecimal numbers, certain ones become very obvious. But here’s a 
quick chart to show how it works: 
 
DEC 00 - 01 - 02 - 03 - 04 - 05 - 06 - 07 - 08 - 09 - 10 - 11 - 12 - 13 - 14 - 15 
HEX 00 - 01 - 02 - 03 - 04 - 05 - 06 - 07 - 08 - 09 - 0A - 0B - 0C - OD - OE - 0F 

 

After 0F, the hex values would start over as 10. You can see the next value 
on the decimal chart would be 16. This is why DEC 16 = HEX 10. 
 
Hexadecimal numbers are written #$xx. If you ever are confused about 
hexadecimal numbers, though, you can always just write #xx to work in 
decimal. If you were to write #16, that would mean decimal value sixteen. If 
you were to write #$10, that would be the equivalent, also meaning sixteen. 
 
So why work in HEX at all? Well, for one thing, it is really handy in terms of 
working with a system like the NES, which works entirely in 8-bit. An 8-bit 



number is a number that is made up of 8 individual bits, each of which can 
be flipped to a zero or a 1. You can also write numbers in binary, which 
reflects the bits. In binary, the numbers one through fifteen would be written 
like this: 
 
 
 
DECIMAL HEXADECIMAL BINARY 

0 00 #%00000000 

1 01 #%00000001 

2 02 #%00000010 

3 03 #%00000011 

4 04 #%00000100 

5 05 #%00000101 

6 06 #%00000110 

7 07 #%00000111 

8 08 #%00001000 

9 09 #%00001001 

10 0A #%00001010 

11 0B #%00001011 

12 0C #%00001100 

13 0D #%00001101 

14 0E #%00001110 

15 0F #%00001111 

 
 



The total number of possible combinations for a single byte, which is made 
up of 8 bits, is 255, which is expressed in binary as #%11111111, which is 
expressed in hexadecimal as #$FF. 
 
Now, with binary, there are no other possible combinations. Each of those 
places can only be occupied by a one or a zero. With decimal numbers, 
though, it doesn’t quite translate. The next value would be 256, then 257, 
then 258, etc…and we wouldn’t be thinking about the next place value until 
999.  
 
But HEX is an interesting middle ground. Since each place value can go 
from 0-F, with F being the 15th and final value possible for each place 
value, #FF represents the highest 8-bit number. Adding one to FF sets it 
back to 00 (and adds one to the upper place value). It is easier to read than 
binary (for most people), but it also more quickly conveys a relationship to 
the 8 bit number than decimal.  
 
The more you work with it, the more intuitive it becomes, and the more you 
realize why it’s very valuable when working in 8-bit math to understand how 
to play with hex numbers. But as far as the program understands it, #16 = 
#$10 = #%00010000…they all equal “sixteen”. Feel free to put any of them 
as your comparison for X and they’ll work the same. 
 



 
 
 

Now if you save and test your game, you should see that your entire slate 
of 16 colors fill the proper slots in MESEN’s palette viewer. 
 



 
 
 

END OF LESSON 3 
Make sure to save your project. By this point, you should know a bit more 
about NES’s memory allocation, how to write to vRam during NMI, how to 
create and read from table data, a little bit about the X register and how it 
works, and how to construct a simple loop in ASM. 
 
 


